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THE CELL, REYNOLDS NUMBER MYTH 
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SUMMARY 

The commonly accepted linear stability analysis for the forward-time centred-space (FTCS) algorithm 
applied to the transport equation has led to the concept of a cell Reynolds number restriction on the spatial 
grid size. This paper shows where the commonly accepted original analysis is in error and presents the correct 
stability restrictions, which are restrictions on the time step, not the spatial grid size. There i s  no cell Reynolds 
number restriction. The results are confirmed by numerical computations for the two-dimensional driven 
cavity problem. 

INTRODUCTION 

The study of the numerical stability of finite difference algorithms usually starts with the analysis of 
the forward-time centred-space (FTCS) algorithm applied to a model equation such as the one- 
dimensional transport equation 

f t  = - u s ,  + R f x x  (1) 

Such a didactic study provides insights into some of the sources of numerical instability, illustrates 
the relationship between the convective term u f ,  and the diffusion term afxx, and can be used to 
demonstrate such concepts as artificial viscosity and numerical diffusion. Furthermore, in spite of 
its limitations, the FTCS algorithm is still used for many practical calculations. Therefore, owing to 
its educational, historical and practical value, i t  is important that the stability analysis for the 
FTCS algorithm be correct and accurate. 

Unfortunately, there remains in the literature and among practitioners the idea that there is a cell 
Reynolds number restriction that must be satisfied for the FTCS algorithm to be numerically 
stable. That myth is almost as hard to dispel as the flat earth theory in Columbus's time or the idea 
that the sun revolved around the earth in the days of Galileo. 

The concept of a cell Reynolds number restriction evolved from the 1964 work of Fromm.' He 
used the now classical von Neumann stability analysis technique2 to determine necessary stability 
limits on the two-dimensional vorticity transport equation, and mistakenly arrived at the 
conclusion that 

O d C 6 2 d b l  (2) 

C = uAtJAx and d = uAtJAx2 ( 3 )  

where C is the Courant number and d is the diffusion number, defined by 
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Equation (2) corresponds to the well-known criteria 

At < Ax2/2a (4) 

( 5 )  
and 

R,  = uAx/a < 2 

where R, is the so called cell Reynolds number. Equations (2)-(5) are actually the one-dimensional 
equivalent of Fromm’s two-dimensional result. Their derivation contains an important error, but 
in the two-dimensional setting there is also a second (distinct) error in Fromm’s analysis. That 
second error is corrected by the recent work of Hindmarsh, Gresho and Griffiths3 who appear to be 
the first to have derived the correct stability limits for the two- and three-dimensional cases. To’ 
illustrate the error that led to the cell Reynolds number concept, i t  is sufficient to consider only the 
one-dimensional case. 

Equation (4) is a correct result but, as is shown below, equation (5) is both overly restrictive and 
very misleading since it requires a spatial grid size limitation for stability where in reality none 
exists. As early as 1968 Hirt4 arrived at the correct criteria for the one-dimensional case using an 
entirely different approach to the stability analysis. That result received little notice, however, and 
the cell Reynolds number myth has propagated and amplified throughout the numerical analysis 
community. Examples in the literature include the works of Marshall,’ Noye,‘ Olson and Tuann7 
and Torrance et ~ 1 . ~  The result also appears in educational texts and reference books, e.g. those of 
Roache,9 Mitchell and Griffiths‘O and Lapidus and Pinder.” 

Many practitioners know that the cell Reynolds number limit can be violated (excessively) and 
still obtain stable numerical results, and many have suspected that something is not quite right. 
Roache9 even went so far as to show that the result obtained by considering the geometric aspects 
of the stability ellipse obtained from the von Neumann analysis gives a result that is not consistent 
with the cell Reynolds number restriction, but he did not pursue the discrepancy. 

In addition, the misconception has led to some unusual schemes that misleadingly appear to 
have merit. For example Chien” developed an elaborate scaling procedure for the FTCS 
algorithm which he claimed had the main advantage of eliminating the stability limit on the grid 
size. Careful analysis shows, however, that Chien’s scaling does not change the stability limits of 
the algorithm, and that the apparent improvement, shown by numerical experiment, is simply a 
manifestation of the fact that the assumed cell Reynolds number limit never really existed. 

RigalI3 clearly states that there is not a cell Reynolds number stability limit, but unfortunately 
his two-dimensional limit, although necessary, is not sufficient for stability. Leonardi4 appears to 
have been the first to publish the correct one-dimensional result. Clancy15 independently obtained 
the correct one-dimensional result. More recently, Hindmarsh, Gresho and Griffiths3 have more 
thoroughly analysed the stability of the general multidimensional ease. Whereas Leonard,’ 
Clancy” and Hindmarsh et aL3 clearly state that Fromm’s original work is in error, they each 
resort to other means (e.g. the stability ellipse approach discussed by Roaehe’) to obtain the correct 
limits. It is believed that the following derivation is the first which shows where Fromm went wrong 
and brings all the analysis methods that depend on the von Neumann approach into agreement. 

CORRECTING FROMM’S ANALYSIS 

The von Neumann stability analysis is based on the representation of numerical errors at  a specific 
time level by an infinite Fourier series, and the examination of the relative magnitudes of the 
various Fourier components of the errors at successive time steps. The complex amplification 
factor, G, for the FTCS algorithm applied to equation (1) is 

G = l  +2d(cos@-l)-iCsin@ (6) 
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where i = J’( - 1 )  and 0 is a parameter that can take on any value between f co. The von Neumann 
analysis requires that for numerical stability the magnitude of G be no greater than unity for any 
value of 0. Multiplying G by its complex conjugate G, the stability requirement can be expressed as 

(7) 

The stability criteria (is. restrictions on the permissible values of d and C) result from 
examination of equation (7) for all values of 0. This can be done by several methods, but each must 
produce the same result. Fromml chose to infer the stability criteria from examination of the 
critical points (maxima and minima) of the function GG. In that examination he also chose cos 0 as 
the independent variable. Thus, substituting x for cos 8, the problem becomes one of finding the 
values of C and d for which 

GG = [1 + ~ ~ ( C O S  8 - 1)12 + C2(1 - C O S ~  8) d 1 

GG = [l + 2d(x - l)]’ + C2(1 - x2)  d 1 (8) 

in the interval - 1 d x d 1.  
At x = 1, GG = 1 ,  and no limitation is present. At x = - 1, GG = (1 - 44’. Thus, one obvious 

limitation is 0 < d d 1/2 which leads to the time step limitation given by equation (4). A second 
limitation can be deduced from the behaviour of the function GC. As illustrated in Figure 1 ,  there 
are three different types of behaviour for the function GC in the range - 1 < x < 1. They are that 
GGexhibits a maximum in the interval (curve(a)), a minimum in the interval (curve(b)), or neither a 
maximum nor minimum in the interval (curve (c)). Case 1 (curve (a)) represents unstable solutions, 
since the maximum value would be greater than either end point, and thus exceed unity. Case 2 
(curve (b)) represents a set of stable solutions provided that 0 < d < 1/2 and case 3 (curve (c)) 
represents another set of stable solutions for 0 d d d 1/2. 

Using well-known methods to solve for the maximum of the function GG, the results in Table I 
are obtained. 

The result for case 1 was obtained by requiring that GG have a maximum in the interval 
- 1 < x < 1. Case 2 represents situations for which a minimum exists. Case 3 represents situations 
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Figure 1. GG as a function of x for various combinations of C and d 
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Table I 

Comments Case Curve Criteria 
_______.. 

1 (a) c2 > 2d unstable 
2 (b) O < C < 2 d < l  stable 
3 (c) O < C 2 < 2 d < l  stable 

for which a maximum occurs at x > 1. Since there are no values of 0 for which x = cos 0 > 1, the 
values of GG at x > 1 are of no interest. It is an unreal set of solutions that was introduced by 
changing the independent variable from 8 to cos 8. 

Fromm’s error was failing to recognize the set of stable solutions represented by case 3. He 
thereby obtained overly restrictive and misleading conditions given by equation (2). 

The correct condition for stability is the union of stable solutions represented by cases 2 and 3, 
namely 

0 < C2 < 2d < 1 (9) 

At < 2a/u2 (10) 

which reduces to equation (4) plus the restriction R,C < 2 or 

Equation (10) is a restriction on the time step and is independent of the time step restriction given 
by equation (4). Notice that neither equation (4) nor equation (10) contains a restriction on the 
spatial grid size. 

Equations (4) and (5)  are sufficient for stability, since they are more conservative than the 
sufficient and necessary conditions, equations (4) and (10). However, the adoption of equations (4) 
and ( 5 )  as necessary conditions leads to incorrect conclusions such as the cell Reynolds number 
criterion and the commonly held belief that it is not possible to compute stable solutions at high 
Reynolds numbers using the FTCS algorithm without a small spatial grid. 

The mesh refinements necessitated by equation (5 )  are definitely more costly in terms of 
computer storage and computation time than the reduction in time step prescribed by 
equation (10). Those who have stabilized the algorithm at higher Reynolds number by mesh 
refinements have done so because the smaller grid size also requires a smaller time step due to the 
limitation in equation (4). The conclusive stabilizing factor is the reduction in time step, not the 
refinement of the spatial mesh. 

It should be noted that this conclusion deals only with the stability aspects and not the accuracy 
of the solution. Spatial grid refinements at higher Reynolds number will undoubtedly produce a 
more accurate solution. 

TWO-DIMENSIONAL CRITERIA 

The general two-dimensional transport equation, analogous to equation (I),  is 

f t = -  u f x  - of, + %fxx + ~ 2 f , y  

The stability criterion from the von Neumann analysis (comparable to equation (7)) is 

GG = [l + 2d,(cos 0, - 1) + 2d,(cos 0, - I)], + [ C ,  sin 0, + C, sin 0,12 d 1 

for all values of 8, and 0,, where 
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Fromm' simplified his original analysis by assuming that 0, = 0,. He did note, however, that the 
criteria so obtained can only be less stringent than the true criteria, that is, that simplification is 
under-restrictive and leads to a necessary condition that is not sufficient. That logical error has 
been masked heretofore by the conservative cell Reynolds number myth. 

For the special case of H1 = H,, equation (12) can be written 

GG = [l + 2(d ,  + d,) (cos 0 - 1)]2 + (C, + C,)2(1 - cos2 0) < 1 

0 6 (C, + C,), d 2(d, + d,)  6 1 

(14) 

(1 5 )  

for all values of 8. By analogy to equation (7), the resulting necessary stability criteria are 

Hindmarsh, Gresho and Griffiths3 have shown that the special condition 8, = H ,  leads to anon- 
sufficient restriction (i.e. equation (15) is necessary but not sufficient), and have determined the 
correct necessary and sufficient conditions by treating 8, and 8, as independent variables. Their 
result is generalized for n-dimensions. The correct result for the two-dimensional case is 

(16) 0 6 2(d, + d2)  6 1 
and 

0 d C:/2d, + C:/2d2 d 1 

In terms of a time-step limitation, equations (16) and (17) give 

and 

There is no limitation on the spatial grid. 
The stability criteria given by equations (1 8) and (19) were tested using numerical experiment- 

ation for the FTCS algorithm applied to the two-dimensional driven cavity problem using the 
stream-function-vorticity approach. Because of the non-linearity of the problem (u and v are not 
constant) the demarcation between stable and unstable calculations is not as sharp as for linear 
problems. None the less, the result was clear in that stable solutions (not necessarily accurate 
solutions) are always obtained when equations (18) and (19) are locally satisfied. Furthermore, 
unstable results are obtained when the criteria of equation (1 5) are satisfied but equation (1 7) is 
violated. 

Finally, the numerical results show that the local cell Reynolds number limitation given by 
Fromm can be violated by nearly two orders of magnitude while obtaining well-behaved, stable, 
reasonable solutions. Spatial grid refinements were required for enhanced accuracy, but offered no 
advantage with respect to the stability of the algorithm. 

CONCLUSIONS 

The necessary and sufficient conditions for stability of the FTCS algorithm have finally been 
corrected after 20 years. The correct criteria are limitations on the admissible time step and do not 
contain a space grid limitation. The idea of a cell Reynolds number restriction is a myth. 
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